
ST. ANNE’S COLLEGE OF ENGINEERING AND TECHNOLOGY

ANGUCHETTYPALAYAM, PANRUTI – 607 110

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

PREPARED BY

 Mr.D.RAJ THILAK.,

 ASSISTANT PROFESSOR /CSE

LAB MANUAL

EC 3401 – NETWORKS AND SECURITY LABORATORY

Regulation 2021

Year / Semester: II / IV

FEB 2023 – MAY 2023

MARCH 2024 - JUN 2024

EC 3401 – NETWORKS AND SECURITY LABORATORY

OBJECTIVES:

 To learn the Network Models and datalink layer functions.

 To understand routing in the Network Layer.

 To explore methods of communication and congestion control by the Transport Layer.

 To study the Network Security Mechanisms.

 To learn various hardware security attacks and their countermeasures.

PRACTICAL EXERCISES: EXPERIMENTS USING C

1.Implement the Data Link Layer framing methods,

i) Bit stuffing, (ii) Character stuffing

2. Implementation of Error Detection / Correction Techniques

i) LRC, (ii) CRC, (iii) Hamming code

3. Implementation of Stop and Wait, and Sliding Window Protocols

4. Implementation of Go back-N and Selective Repeat Protocols.

5. Implementation of Distance Vector Routing algorithm (Routing Information Protocol)

(Bellman-Ford).

6. Implementation of Link State Routing algorithm (Open Shortest Path First) with 5 nodes

(Dijkstra's).

7. Data encryption and decryption using Data Encryption Standard algorithm.

8. Data encryption and decryption using RSA (Rivest, Shamir and Adleman) algorithm.

9. Implement Client Server model using FTP protocol.

Experiments using Tool Command Language

1. Implement and realize the Network Topology - Star, Bus and Ring using NS2.

2. Implement and perform the operation of CSMA/CD and CSMA/CA using NS2.

PRACTICAL: 30 PERIODS

TABLE OF CONTENTS

S.NO. DATE EXPERIMENT TITLE
PAGE

NO
SIGN.

1

Implement the Data Link Layer framing methods,

i) Bit stuffing, (ii) Character stuffing

2

 Implementation of Error Detection / Correction

Techniques

i) LRC, (ii) CRC, (iii) Hamming code

3

 Implementation of Stop and Wait, and Sliding

Window Protocols

4

Implementation of Go back-N and Selective Repeat

Protocols

5

 Implementation of Distance Vector Routing

algorithm (Routing Information Protocol) (Bellman-

Ford).

6

 Implementation of Link State Routing algorithm

(Open Shortest Path First) with 5 nodes (Dijkstra's).

7

 Data encryption and decryption using Data

Encryption Standard algorithm.

8

 Data encryption and decryption using RSA (Rivest,

Shamir and Adleman) algorithm.

9

Implement Client Server model using FTP protocol.

1.Implement the Data Link Layer framing methods,

i) Bit stuffing

Aim::

To write a c program using Implement the Data Link Layer framing methods in Bit

Stuffing.

Algorithm::

STEP-1: Read the Frame Size from the user.

STEP-2: Read the key value from the user.

STEP-3: If the size convert add the loop values.

STEP-4: Values convert the frames

STEP-5: Display the Bit Stuffing obtained above

Program::

#include<stdio.h>

#include<string.h>

int main()

{

 int a[20],b[30],i,j,k,count,n;

 printf("Enter frame size (Example: 8):");

 scanf("%d",&n);

 printf("Enter the frame in the form of 0 and 1 :");

 for(i=0; i<n; i++)

 scanf("%d",&a[i]);

 i=0;

 count=1;

 j=0;

 while(i<n)

 {

 if(a[i]==1)

 {

 b[j]=a[i];

 for(k=i+1; a[k]==1 && k<n && count<5; k++)

 {

 j++;

 b[j]=a[k];

 count++;

 if(count==5)

 {

 j++;

 b[j]=0;

 }

 i=k;

 }

 }

 else

 {

 b[j]=a[i];

 }

 i++;

 j++;

 }

 printf("After Bit Stuffing :");

 for(i=0; i<j; i++)

 printf("%d",b[i]);

 return 0;

}

Output:

Enter frame size (Example: 8):12

Enter the frame in the form of 0 and 1 :0 1 0 1 1 1 1 1 1 0 0 1

After Bit Stuffing :0101111101001

Result::

Thus, the above program was Successfully completed and verified.

(ii) Character stuffing

Aim::

To write a c program using Implement the Data Link Layer framing methods in Character

Stuffing.

Algorithm::

STEP-1: Read the Frame Size from the user.

STEP-2: Read the Character from the user.

STEP-3: convert the Starting and ending delimiter

STEP-4: Values convert the frames

STEP-5: Display the Character Stuffing obtained above

Program:

#include<stdio.h>

#include<string.h>

main()

{

 char a[30], fs[50] = " ", t[3], sd, ed, x[3], s[3], d[3], y[3];

 int i, j, p = 0, q = 0;

 clrscr();

 printf("Enter characters to be stuffed:");

 scanf("%s", a);

 printf("\nEnter a character that represents starting delimiter:");

 scanf(" %c", &sd);

 printf("\nEnter a character that represents ending delimiter:");

 scanf(" %c", &ed);

 x[0] = s[0] = s[1] = sd;

 x[1] = s[2] = '\0';

 y[0] = d[0] = d[1] = ed;

 d[2] = y[1] = '\0';

 strcat(fs, x);

 for(i = 0; i < strlen(a); i++)

 {

 t[0] = a[i];

 t[1] = '\0';

 if(t[0] == sd)

 strcat(fs, s);

 else if(t[0] == ed)

 strcat(fs, d);

 else

 strcat(fs, t);

 }

 strcat(fs, y);

 printf("\n After stuffing:%s", fs);

 getch();

 }

Output:-

Enter characters to be stuffed: goodday

Enter a character that represents starting delimiter: d

Enter a character that represents ending delimiter: g

After stuffing: dggooddddayg.

Result::

Thus, the above program was Successfully completed and verified.

2. Implementation of Error Detection / Correction Techniques

Aim::

To write a c program using Implement of Error Detection / Correction Techniques in

LRC,CRC.

Algorithm::

STEP 1 :Get the data and generator polynomial.

STEP 2 :Let n be the length of the generator polynomial.

STEP 3 :Append n-1 zeros to data.

STEP 4 :Call the CRC function.

STEP 5 :

STEP 6 :If the first bit is 1, then perform a xor operation with the first n bits of data and the

generator polynomial.

STEP 7 :Shift the bits by 1 position to leave the first bit.

STEP 8 :Append a bit from the data. Repeat the process until all the bits in the data are

appended.

i) LRC,

Program:

#include<stdio.h>

#include<conio.h>

void main()

{

 int l1,bit[100],count=0,i,choice;

 clrscr();

 printf("Enter the length of data stream: ");

 scanf("%d",&l1);

 printf("\nEnter the data stream ");

 for(i=0;i<l1;i++)

 {

 scanf("%d",&bit[i]);

 if(bit[i]==1)

 count=count+1;

 }

 printf("Number of 1's are %d",count);

 printf("\nEnter the choice to implement parity bit");

 printf("\n1-Sender side\n2-Receiver side\n");

 scanf("%d",&choice);

 switch(choice)

 {

 case 1:

 if(count%2==0)

 bit[l1]=0;

 else

 bit[l1]=1;

 printf("\nThe data stream after adding parity bit is\n");

 for(i=0;i<=l1;i++)

 printf("%d",bit[i]);

 break;

 case 2:

 if(count%2==0)

 printf("There is no error in the received data stream");

 else

 printf("There is error in the received data stream");

 break;

 default:

 printf("Invalid choice");

 break;

 }

getch();

}

Output::

Enter the length of data stream: 10

Enter the data stream 1 1 0 1 0 1 1 1 0 1

Number of 1's are 7

Enter the choice to implement parity bit

1-Sender side

2-Receiver side

1

The data stream after adding parity bit is

11010111011

Enter the length of data stream: 10

Enter the data stream 1 1 1 1 1 0 0 0 1 0

Number of 1's are 6

Enter the choice to implement parity bit

1-Sender side

2-Receiver side

2

There is no error in the received data stream

 (ii) CRC,

Program::

#include <stdio.h>

 #include <conio.h>

 #include <string.h>

 void main() {

 int i,j,keylen,msglen;

 char input[100], key[30],temp[30],quot[100],rem[30],key1[30];

 clrscr();

 printf("Enter Data: ");

 gets(input);

 printf("Enter Key: ");

 gets(key);

 keylen=strlen(key);

 msglen=strlen(input);

 strcpy(key1,key);

 for (i=0;i<keylen-1;i++) {

 input[msglen+i]='0';

 }

 for (i=0;i<keylen;i++)

 temp[i]=input[i];

 for (i=0;i<msglen;i++) {

 quot[i]=temp[0];

 if(quot[i]=='0')

 for (j=0;j<keylen;j++)

 key[j]='0'; else

 for (j=0;j<keylen;j++)

 key[j]=key1[j];

 for (j=keylen-1;j>0;j--) {

 if(temp[j]==key[j])

 rem[j-1]='0'; else

 rem[j-1]='1';

 }

 rem[keylen-1]=input[i+keylen];

 strcpy(temp,rem);

 }

 strcpy(rem,temp);

 printf("\nQuotient is ");

 for (i=0;i<msglen;i++)

 printf("%c",quot[i]);

 printf("\nRemainder is ");

 for (i=0;i<keylen-1;i++)

 printf("%c",rem[i]);

 printf("\nFinal data is: ");

 for (i=0;i<msglen;i++)

 printf("%c",input[i]);

 for (i=0;i<keylen-1;i++)

 printf("%c",rem[i]);

 getch();

}

Output::

Enter the Number::

1

0

1

0

0

0

0

1

Enter the divisor

1

0

0

1

The quotient is 10110111 and the remainder is 0111

Result::

Thus, the above program was Successfully completed and verified.

3. Implementation of Stop and Wait, and Sliding Window Protocols

Aim::

To write a c program using Implementation of Stop and Wait, and Sliding Window

Protocols

Algorithm::

STEP 1: Start the Program

STEP 2: Import all the necessary packages

STEP 3: Create two application sender and receiver

STEP 4: Connect both applications using socket

STEP 5: Sender port number and the frame is input as receiver

STEP 6: Sender frame is send to the receiver and display to the reciever

Program::

#include<stdio.h>

#include<conio.h>

void main()

{

char sender[50],receiver[50];

int i,winsize;

clrscr();

 printf("\n ENTER THE WINDOWS SIZE : ");

scanf("%d",&winsize);

 printf("\n SENDER WINDOW IS EXPANDED TO STORE MESSAGE OR WINDOW \n");

 printf("\n ENTER THE DATA TO BE SENT: ");

fflush(stdin);

gets(sender);

for(i=0;i<winsize;i++)

receiver[i]=sender[i];

receiver[i]=NULL;

 printf("\n MESSAGE SEND BY THE SENDER:\n");

 puts(sender);

 printf("\n WINDOW SIZE OF RECEIVER IS EXPANDED\n");

 printf("\n ACKNOWLEDGEMENT FROM RECEIVER \n");

for(i=0;i<winsize;i++);

printf("\n ACK:%d",i);

 printf("\n MESSAGE RECEIVED BY RECEIVER IS : ");

 puts(receiver);

 printf("\n WINDOW SIZE OF RECEIVER IS SHRINKED \n");

getch();

}

Output::

Enter the windows size : 10

Sender window is expanded to store message or window

Enter the data to be sent: forgetcode.com

Message send by the sender:

forgetcode.com

Window size of receiver is expanded

Acknowledgement from receiver

Ack:5

Message received by receiver is : forgetcode

Window size of receiver is shrinked

Result::

Thus, the above program was Successfully completed and verified.

4. Implementation of Go back-N and Selective Repeat Protocols.

Aim::

To write a c program using Implementation of Go back-N and Selective Repeat Protocols

Algorithm::

STEP 1. Start.

 STEP 2. Establish connection (recommended UDP)

 STEP 3. Accept the window size from the client(should be <=40)

 STEP 4. Accept the packets from the network layer.

 STEP 5. Calculate the total frames/windows required.

 STEP 6. Send the details to the client(totalpackets,totalframes.)

 STEP 7. Initialise the transmit buffer.

 STEP 8. Built the frame/window depending on the windowsize.

 STEP 9. Transmit the frame.

 STEP 10. Wait for the acknowledgement frame.

 STEP 11. Close the connection.

Program::

#include<stdio.h>

int main()

{

 int windowsize,sent=0,ack,i;

 printf("enter window size\n");

 scanf("%d",&windowsize);

 while(1)

 {

 for(i = 0; i < windowsize; i++)

 {

 printf("Frame %d has been transmitted.\n",sent);

 sent++;

 if(sent == windowsize)

 break;

 }

 printf("\nPlease enter the last Acknowledgement received.\n");

 scanf("%d",&ack);

 if(ack == windowsize)

 break;

 else

 sent = ack;

 }

return 0;

}

Output:-

enter window size

8

Frame 0 has been transmitted.

Frame 1 has been transmitted.

Frame 2 has been transmitted.

Frame 3 has been transmitted.

Frame 4 has been transmitted.

Frame 5 has been transmitted.

Frame 6 has been transmitted.

Frame 7 has been transmitted.

Please enter the last Acknowledgement received.

2

Frame 2 has been transmitted.

Frame 3 has been transmitted.

Frame 4 has been transmitted.

Frame 5 has been transmitted.

Frame 6 has been transmitted.

Frame 7 has been transmitted.

Please enter the last Acknowledgement received. 8

Result::

Thus, the above program was Successfully completed and verified.

5. Implementation of Distance Vector Routing algorithm (Routing Information Protocol)

(Bellman-Ford).

Aim::

To write a c program using Implementation of Distance Vector Routing algorithm

(Routing Information Protocol) (Bellman-Ford)

Algorithm::

STEP 1. Open VI-RTSIM software from desktop

STEP 2. Click the Simulation menu bar

STEP 3. Select the “Distance – Vector Routing Algorithm” option from Routing

algorithm menu bar.

STEP Network with routers connected through link is drawn by using option in

editor(add router, join link, delete router, delete link, Add caption to link, add caption to

router)

STEP 5. Select any two nodes to find the shortest distance between them.

STEP 6:Click the Find path Button to run the program.

STEP 7. Now the shortest paths between the two nodes are calculated.

Program::

#include<stdio.h>

struct node

{

 unsigned dist[20];

 unsigned from[20];

}rt[10];

int main()

{

 int costmat[20][20];

 int nodes,i,j,k,count=0;

 printf("\nEnter the number of nodes : ");

 scanf("%d",&nodes);//Enter the nodes

 printf("\nEnter the cost matrix :\n");

 for(i=0;i<nodes;i++)

 {

 for(j=0;j<nodes;j++)

 {

 scanf("%d",&costmat[i][j]);

 costmat[i][i]=0;

 rt[i].dist[j]=costmat[i][j];//initialise the distance equal to cost matrix

 rt[i].from[j]=j;

 }

 }

 do

 {

 count=0;

 for(i=0;i<nodes;i++)//We choose arbitary vertex k and we calculate the direct distance

from the node i to k using the cost matrix

 //and add the distance from k to node j

 for(j=0;j<nodes;j++)

 for(k=0;k<nodes;k++)

 if(rt[i].dist[j]>costmat[i][k]+rt[k].dist[j])

 {//We calculate the minimum distance

 rt[i].dist[j]=rt[i].dist[k]+rt[k].dist[j];

 rt[i].from[j]=k;

 count++;

 }

 }while(count!=0);

 for(i=0;i<nodes;i++)

 {

 printf("\n\n For router %d\n",i+1);

 for(j=0;j<nodes;j++)

 {

 printf("\t\nnode %d via %d Distance %d ",j+1,rt[i].from[j]+1,rt[i].dist[j]);

 }

 }

 printf("\n\n");

 getch();

}

/*

Output::

A sample run of the program works as:-

Enter the number of nodes :

3

Enter the cost matrix :

0 2 7

2 0 1

7 1 0

For router 1

node 1 via 1 Distance 0

node 2 via 2 Distance 2

node 3 via 3 Distance 3

For router 2

node 1 via 1 Distance 2

node 2 via 2 Distance 0

node 3 via 3 Distance 1

For router 3

node 1 via 1 Distance 3

node 2 via 2 Distance 1

node 3 via 3 Distance 0

Result::

Thus, the above program was Successfully completed and verified.

6. Implementation of Link State Routing algorithm (Open Shortest Path First) with 5 nodes

(Dijkstra's).

Aim::

To write a c program using Implementation of Link State Routing algorithm (Open

Shortest Path First) with 5 nodes (Dijkstra's).

Algorithm::

STEP 1. Create a simulator object

STEP 2. Define different colors for different data flows

STEP 3. Open a nam trace file and define finish procedure then close the trace file, and execute

nam on trace file.

STEP 4. Create n number of nodes using for loop

STEP 5. Create duplex links between the nodes

STEP 6. Setup UDP Connection between n(0) and n(5)

STEP 7. Setup another UDP connection between n(1) and n(5)

STEP 8. Apply CBR Traffic over both UDP connections

STEP 9. Choose Link state routing protocol to transmit data from sender to receiver.

STEP 10. Schedule events and run the program.

Program::

#include <limits.h>

#include <stdio.h>

#define V 9

int minDistance(int dist[], bool sptSet[]) {

 int min = INT_MAX, min_index;

 for (int v = 0; v < V; v++)

 if (sptSet[v] == false && dist[v] <= min)

 min = dist[v], min_index = v;

 return min_index;

}

int printSolution(int dist[], int n) {

 printf("Vertex Distance from Source\n");

 for (int i = 0; i < V; i++)

 printf("%d \t %d\n", i, dist[i]);

}

void dijkstra(int graph[V][V], int src) {

 int dist[V];

 bool sptSet[V];

 for (int i = 0; i < V; i++)

 dist[i] = INT_MAX, sptSet[i] = false;

 dist[src] = 0;

 for (int count = 0; count < V - 1; count++) {

 int u = minDistance(dist, sptSet);

 sptSet[u] = true;

 for (int v = 0; v < V; v++)

 if (!sptSet[v] && graph[u][v] && dist[u] != INT_MAX && dist[u] + graph[u][v] < dist[v])

dist[v] = dist[u] + graph[u][v];

 }

 printSolution(dist, V);

}

int main()

{

 int graph[V][V] = { { 0, 6, 0, 0, 0, 0, 0, 8, 0 },

 { 6, 0, 8, 0, 0, 0, 0, 13, 0 },

 { 0, 8, 0, 7, 0, 6, 0, 0, 2 },

 { 0, 0, 7, 0, 9, 14, 0, 0, 0 },

 { 0, 0, 0, 9, 0, 10, 0, 0, 0 },

 { 0, 0, 6, 14, 10, 0, 2, 0, 0 },

 { 0, 0, 0, 0, 0, 2, 0, 1, 6 },

 { 8, 13, 0, 0, 0, 0, 1, 0, 7 },

 { 0, 0, 2, 0, 0, 0, 6, 7, 0 }

 };

 dijkstra(graph, 0);

 return 0;

}

Output::

Vertex Distance from Source

0 0

1 6

2 14

3 21

4 21

5 11

6 9

7 8

8 15

Result::

Thus, the above program was Successfully completed and verified.

7. Data encryption and decryption using Data Encryption Standard algorithm.

Aim::

To write a c program using Data encryption and decryption using Data Encryption

Standard algorithm.

Algorithm::

STEP-1: Read the 64-bit plain text.

STEP-2: Split it into two 32-bit blocks and store it in two different arrays.

STEP-3: Perform XOR operation between these two arrays.

STEP-4: The output obtained is stored as the second 32-bit sequence and the original second 32-

bit sequence forms the first part.

STEP-5: Thus the encrypted 64-bit cipher text is obtained in this way. Repeat the same process

for the remaining plain text characters.

Program::

//Simple C program to encrypt and decrypt a string

#include <stdio.h>

int main()

{

 int i, x;

 char str[100];

 printf("\nPlease enter a string:\t");

 gets(str);

 printf("\nPlease choose following options:\n");

 printf("1 = Encrypt the string.\n");

 printf("2 = Decrypt the string.\n");

 scanf("%d", &x);

 //using switch case statements

 switch(x)

 {

 case 1:

 for(i = 0; (i < 100 && str[i] != '\0'); i++)

 str[i] = str[i] + 3; //the key for encryption is 3 that is added to ASCII value

 printf("\nEncrypted string: %s\n", str);

 break;

 case 2:

 for(i = 0; (i < 100 && str[i] != '\0'); i++)

 str[i] = str[i] - 3; //the key for encryption is 3 that is subtracted to ASCII value

 printf("\nDecrypted string: %s\n", str);

 break;

 default:

 printf("\nError\n");

 }

 return 0;

}

Output:

#Encryption

#Decryption

Result::

Thus, the above program was Successfully completed and verified.

8. Data encryption and decryption using RSA (Rivest, Shamir and Adleman) algorithm.

Aim::

To write a c program using Data encryption and decryption using RSA (Rivest, Shamir

and Adleman) algorithm

Algorithm::

STEP-1: Select two co-prime numbers as p and q.

STEP-2: Compute n as the product of p and q.

STEP-3: Compute (p-1)*(q-1) and store it in z.

STEP-4: Select a random prime number e that is less than that of z.

STEP-5: Compute the private key, d as e * mod-1(z).

STEP-6: The cipher text is computed as messagee * mod n.

STEP-7: Decryption is done as cipherdmod n.

Program::

#include<stdio.h>

#include<math.h>

//to find gcd

int gcd(int a, int h)

{

 int temp;

 while(1)

 {

 temp = a%h;

 if(temp==0)

 return h;

 a = h;

 h = temp;

 }

}

int main()

{

 //2 random prime numbers

 double p = 3;

 double q = 7;

 double n=p*q;

 double count;

 double totient = (p-1)*(q-1);

 //public key

 //e stands for encrypt

 double e=2;

 //for checking co-prime which satisfies e>1

 while(e<totient){

 count = gcd(e,totient);

 if

(count==1)

 break;

 else

 e++;

 }

 //private key

 //d stands for decrypt

 double d;

 //k can be any arbitrary value

 double k = 2;

 //choosing d such that it satisfies d*e = 1 + k * totient

 d = (1 + (k*totient))/e;

 double msg = 12;

 double c = pow(msg,e);

 double m = pow(c,d);

 c=fmod(c,n);

 m=fmod(m,n);

 printf("Message data = %lf",msg);

 printf("\np = %lf",p);

 printf("\nq = %lf",q);

 printf("\nn = pq = %lf",n);

 printf("\ntotient = %lf",totient);

 printf("\ne = %lf",e);

 printf("\nd = %lf",d);

 printf("\nEncrypted data = %lf",c);

 printf("\nOriginal Message Sent = %lf",m);

 return 0;

}

Output:

Message data = 12.000000

p = 3.000000

q = 7.000000

n = pq = 21.000000

totient = 12.000000

e = 5.000000

d = 5.000000

Encrypted data = 3.000000

Original Message Sent = 12.000000

Result::

Thus, the above program was Successfully completed and verified.

9. Implement Client Server model using FTP protocol.

Aim::

To write a c program using Implement Client Server model using FTP protocol.

Algorithm::

STEP 1. The server starts and waits for filename.

STEP 2. The client sends a filename.

STEP 3. The server receives filename.

 If file is present,

 server starts reading file

 and continues to send a buffer filled with

 file contents encrypted until file-end is reached.

STEP 4. End is marked by EOF.

STEP 5. File is received as buffers until EOF is

received. Then it is decrypted.

STEP 6. If Not present, a file not found is sent.

Program::

#include <stdio.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <sys/stat.h>

#include <sys/sendfile.h>

#include <fcntl.h>

#include <stdlib.h>

#include <string.h>

#define FILENAME "a.txt"

#define SERVER_IP "127.0.0.1"

#define SERVER_PORT 65496

int main(int argc , char **argv)

{

 int socket_desc;

 struct sockaddr_in server;

 char request_msg[BUFSIZ],

 reply_msg[BUFSIZ];

 // Variables for the file being received

 int file_size,

 file_desc;

 char *data;

 socket_desc = socket(AF_INET, SOCK_STREAM, 0);

 if (socket_desc == -1)

 {

 perror("Could not create socket");

 return 1;

 }

 server.sin_addr.s_addr = inet_addr(SERVER_IP);

 server.sin_family = AF_INET;

 server.sin_port = htons(SERVER_PORT);

 // Connect to server

 if (connect(socket_desc, (struct sockaddr *)&server, sizeof(server)) < 0)

 {

 perror("Connection failed");

 return 1;

 }

 // Get a file from server

 strcpy(request_msg, "Get ");

 strcat(request_msg, FILENAME);

 write(socket_desc, request_msg, strlen(request_msg));

 recv(socket_desc, reply_msg, 2, 0);

 // Start receiving file

 if (strcmp(reply_msg, "OK") == 0) {

 recv(socket_desc, &file_size, sizeof(int), 0);

 data = malloc(file_size);

 file_desc = open(FILENAME, O_CREAT | O_EXCL | O_WRONLY, 0666);

 recv(socket_desc, data, file_size, 0);

 write(file_desc, data, file_size);

 close(file_desc);

 }

 else {

 fprintf(stderr, "Bad request\n");

 }

 return 0;

}

Output:

Connection failed: Connection refused

Result::

Thus, the above program was Successfully completed and verified.

